VTX Simulation

Alan Dion

Iowa State University 2009-06-02

STATUS OVER VIEW: WORKING IMPLEMENTATIONS

Stand-alone tracking and vertex-finding is working in realistic simulations of Au+Au events with realistic detector response.

Matching between VTX tracks and central arms

DCA determination of tracks from heavy flavor decays

IN PROGRESS

Photon-jet correlation study

Tighter integration of VTX software with the PHENIX infrastructure

Full-scale blind analysis using realistic simulation of VTX (and FVTX)

TRACKING ALGORITHM

TRACKING

- For a constant magnetic field and given $|\overrightarrow{p}|$ and 2 space points, a unique helix can be contructed.
- At each detector layer the track can be scattered. The interactions are assumed to be elastic.
- Tracks which have small apparent scatters are reconstructed at the momentum which minimizes the scatters.

Material thickness and p-dependence of scattering is taken into account

VERTEXING

- Using pixel layers, get initial guess at z vertex in order to filter out many secondary tracks
- Perform tracking though 4 layers for tracks which point roughly to the initial z vertex
- Find vertex position which maximizes total track quality (minimizes apparent scattering angles)

VERTEX RESOLUTION

MOMENTUM RESOLUTION

COMBINING WITH THE CENTRAL ARMS

ALGORITHM

- \bullet For each drift chamber track, make a list of candidate VTX tracks by matching in 3D momentum space.
- Project the drift chamber track back to the VTX and calculate the intersection positions with the VTX layers
- Select the candidate which minimizes $\sum_{\text{layers}} |\overrightarrow{x}_{\text{cluster}} \overrightarrow{x}_{\text{projection}}|^2$

only momentum cut is used in this plot (no position χ^2)

minimum-bias HINING Events

CHARM/BOTTOM SEPARATION

KEY POINTS

- Electron identification in PHENIX is robust, and the number of electrons per event is small.
- Matching to the central arms is simple above p_T
 of 1 GeV/c. The multiplicity is dominated by low
 p_T tracks.
- In PHENIX, most (2/3) electrons with p_T above 2 GeV/c come from heavy flavor decays.

ALGORITHM

- • Use simulation and knowledge of D,B kinematics to obtain dN/dx_{DCA} for decay electrons
- Measure yield of electrons integrated above a DCA cut as a function of the DCA cut
- Fit the yield vs. DCA to the known shapes for B, D, and background e[±]

CHARM/BOTTOM SEPARATION

CHARM/BOTTOM SEPARATION

IF YOU BUILD IT...

In realistic simulations all the tools for c/b separation via e^{\pm} are in place.

Matching between VTX tracks and central arms is easy above 1 GeV/c

Performance does not degrade in Au+Au collisions

PHYSICS WILL COME

The blind analysis will have us ready for data analysis on day 1

There are other techniques to separate c & b, such as vertex multiplicity

Other opportunities, such a triggering and correlating with other PHENIX upgrades, are being explored

Green: properly reconstructed track. Red: MC track not reconstructed. Blue: ghost track

Note the large scatter in the 3rd layer. This track won't be reconstructed.

In high multiplicity events, curlers and noise become a nuisance.

We can reconstruct photon conversions in the beampipe and inner layer!